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A B S T R A C T

Cardiovascular disease (CVD) accounts for about half of non-communicable diseases. Vessel stenosis in the
coronary artery is considered to be the major risk of CVD. Computed tomography angiography (CTA) is one
of the widely used noninvasive imaging modalities in coronary artery diagnosis due to its superior image
resolution. Clinically, segmentation of coronary arteries is essential for the diagnosis and quantification of
coronary artery disease. Recently, a variety of works have been proposed to address this problem. However,
on one hand, most works rely on in-house datasets, and only a few works published their datasets to the
public which only contain tens of images. On the other hand, their source code have not been published,
and most follow-up works have not made comparison with existing works, which makes it difficult to judge
the effectiveness of the methods and hinders the further exploration of this challenging yet critical problem
in the community. In this paper, we propose a large-scale dataset for coronary artery segmentation on CTA
images. In addition, we have implemented a benchmark in which we have tried our best to implement several
typical existing methods. Furthermore, we propose a strong baseline method which combines multi-scale patch
fusion and two-stage processing to extract the details of vessels. Comprehensive experiments show that the
proposed method achieves better performance than existing works on the proposed large-scale dataset. The
benchmark and the dataset are published at https://github.com/XiaoweiXu/ImageCAS-A-Large-Scale-Dataset-
and-Benchmark-for-Coronary-Artery-Segmentation-based-on-CT.
1. Introduction

Cardiovascular disease (CVD) is one of the leading health problems
around the world nowadays. According to World Health Organization
(WHO), 17.9 million deaths due to CVD occurred in 2019, accounting
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for 32% of all global deaths (Organization et al., 2009). Australian
Institute of Health and Welfare (AIHW) reported that CVD was the
leading cause of deaths in Australia, representing 42% of all death in
2018 (Zhang, 2010). Among all the CVDs, coronary heart disease is the
most common type (Cooper et al., 2000) where the pathophysiology is
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mainly attributed to abnormal coronary artery stenosis. Such stenosis
often results in decreased myocardial perfusion and hypoxia damage of
myocardial cells, and finally leads to myocardial infarction.

In clinical practice, computed tomography angiography (CTA) is
widely used for diagnosis and treatment planning of coronary artery
diseases since it is noninvasive and able to provides high-resolution
3D imaging (Collet et al., 2018). Once CTA images are obtained,
radiologists first locate the coronary arteries and isolate its bound-
aries. Then, the narrowing part is extracted and quantified for final
diagnosis and treatment planning. It is widely acknowledged that,
however, such a process based on manual operations are unfavorably
time-consuming and error-prone. What is worse, the ever-increasing
quantity and variety of medical images (Li et al., 2018c) can even make
manual segmentation completely impracticable in terms of cost and
reproducibility. Therefore, automatic coronary artery segmentation is
highly desirable.

However, this task is very challenging due to multiple reasons.
First, the anatomical structure of coronary artery varies significantly
from population to population. For example, coronary arteries are
usually surrounded by a layer of fat but in some people the arteries
are within the heart muscle itself. Second, some CTA images are noisy
with artifacts that will cause low quality in segmentation result. Third,
the tubular structure of coronary arteries is extremely complex. For
example, there is a large number of bifurcations along the arteries and a
small proportion of coronary arteries area in the transverse planes (Zhu
et al., 2021).

To address the above issues, tens of works have been proposed in
the community in the last decade. The approaches used in these works
can be divided into two main categories: traditional machine learning
(ML) based method, and deep learning (DL) based method. Tradi-
tional ML-based method can be further sub-classified into pixel-based
method (Doyle et al., 2006; Nguyen et al., 2012; Tabesh et al., 2007;
Sirinukunwattana et al., 2015a) and structure-based method (Altunbay
et al., 2010; Gunduz-Demir et al., 2010; Fu et al., 2014; Sirinukun-
wattana et al., 2015b; Lesage et al., 2016). These methods achieve
promising results using hand-crafted features and prior knowledge of
structures of coronary artery (Zheng et al., 2011; Mohr et al., 2012;
Broersen et al., 2012; Shahzad et al., 2013; Chi et al., 2015). However,
they suffer considerable degradation when applied to coronaries with
serious deformation. Different from ML-based method, the recently
proposed DL-based methods require little hand-crafted features or prior
knowledge. Works using such an approach has achieved considerable
improvement over the first approach (Huang et al., 2018; Shen et al.,
2019; Chen et al., 2019; Wolterink et al., 2019; Kong et al., 2020; Gu
and Cai, 2021; Zhu et al., 2021; Tian et al., 2021), proving its high
effectiveness for coronary artery segmentation.

We perform a detailed analysis of existing works as shown in
Table 1 and Table 2, and find that most works fail to make a fair
and comprehensive comparison with others. For example, Kong et al.
(2020) did not make comparisons with any previous related works but
just some popular deep neural networks (DNNs). Shen et al. (2019) just
listed the Dice score of related works for comparison which is not fair
enough as the two methods were not evaluated using the same dataset.
Some works (Chi et al., 2015; Han et al., 2016) even used different
sets of evaluation metrics tailored for specific clinical needs, while
others (Shen et al., 2019) even used different annotations in which the
initial aorta is included, leading to a much higher Dice score. These
evaluative biases are mainly due to the lack of a large-scale benchmark
dataset available in the public domain. The only two public datasets for
coronary artery segmentation (Schaap et al., 2009a; Kirişli et al., 2013)
(also shown in Table 2) only contain 8 and 18 images for training,
respectively. Besides that, all the existing methods have not released
their source code, which has introduced more difficulties for a fair
comparison.

In this paper, we propose a large dataset to fairly investigate the
2

effectiveness of automatic coronary artery segmentation methods. This
dataset contains 1000 3D CTA images, which is considerably larger
than the existing public datasets. In addition, we also propose a bench-
mark based on this dataset, in which we not only implement several
typical existing methods but also propose a strong baseline method.
Experimental results show that our baseline method achieves better
performance than all the existing methods. and meanwhile shows a
good potential for improvement. The contributions of this work are
summarized as follows:

• We have collected a large-scale publicly available dataset con-
taining 1000 patients for coronary artery segmentation available
at https://github.com/XiaoweiXu/ImageCAS-A-Large-Scale-Datas
et-and-Benchmark-for-Coronary-Artery-Segmentation-based-on-C
T. An official data split of the dataset is also provided. We
hope this dataset can help to promote related research in the
community;

• We have proposed a benchmark in which we implemented a
variety of existing methods for coronary artery segmentation. We
have also published the benchmark, and hope this could help
follow-up works to make fair comparisons;

• We have proposed a strong baseline method which combines
multi-scale patch fusion and two-stage processing to extract the
details of vessels, and the experimental results show that our
method has outperformed existing state-of-the-art methods.

The rest of the paper is organized as follows. Section 2 gives an
overview of related works. In Section 3, details of the proposed dataset
is presented. Subsequently, Section 4 presents the proposed benchmark
including several typical existing methods and our baseline method.
The experimental results are presented and discussed in Section 5, and
Section 6 concludes the paper.

2. Related work

In this section, we review existing literature on coronary artery seg-
mentation. We first review the related works by the type of approaches
used, i.e. traditional ML-based approach and DL-based approach, and
then discuss the datasets and benckmarks commonly adopted in these
works.

2.1. Traditional ML-based approach

Hand-crafted features and prior knowledge of structures of coronary
artery are extensively used in this approach as shown Table 1. Zheng
et al. (2011) proposed an ML method to exploit the rich domain-
specific knowledge (particularly a set of geometric and image features)
embedded in an expert-annotated dataset. Mohr et al. (2012) pro-
posed a level-set based approach for efficient processing. Wang et al.
(2012) combines level-sets with an implicit 3D model of the vessels
for accurate segmentation. Broersen et al. (2012) adopted a pipeline
consisting of three consecutive steps. Shahzad et al. (2013) performed
segmentation with the help of extracted centerlines. Lugauer et al.
(2014a) used a learning-based boundary detector to enable a robust
lumen contour detection via dense ray-casting. Lugauer et al. (2014b)
proposed a model-guided segmentation approach based on a Markov
random field formulation with convex priors. Chi et al. (2015) in-
tegrated coronary artery features of density, local shape and global
structure into a learning framework. Lesage et al. (2016) considered
vessel segmentation as an iterative tracking process and proposed a new
Bayesian tracking algorithm based on particle filters for the delineation
of coronary arteries. Han et al. (2016) used an active search method to
find branches and seemingly disconnected but actually connected vessel
segments. Freiman et al. (2017) used a flow simulation method (Nick-
isch et al., 2015) in the coronary trees with accounting for partial
volume effects (Glover and Pelc, 1980). Gao et al. (2019) located
the coronary root through extracting aorta by using circular Hough
transform. Du et al. (2021) proposed a new segmentation framework
which included noise reduction, candidate region detection, geometric

feature extraction, and coronary artery tracking techniques.
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Table 1
Existing traditional machine learning based works and their Dice scores (in %) of coronary artery segmentation in the past decade. In 𝑎(𝑏), 𝑎 is the overall quantity and 𝑏 is the
uantity for training. General indicates that the method is designed for a variety of applications, while specific indicates that the method is designed and optimized for coronary
essel segmentation.
Work Year Data quantity Compared traditional

ML methods
Compared deep
learning methods

Average dice
score

Code
available

Data
available

General Specific General Specific

Zheng et al.
(2011)

2011 54(40) Kroon (2009) NA NA NA NA No No

Mohr et al.
(2012)

2012 24a NA NA NA NA 70–73 No Kirişli et al.
(2013)

Wang et al.
(2012)

2012 42(18) NA NA NA NA 68–72 No Kirişli et al.
(2013)

Broersen
et al. (2012)

2012 42(18) NA NA NA NA 66 No Kirişli et al.
(2013)

Shahzad
et al. (2013)

2013 48(18) NA NA NA NA 65 No Kirişli et al.
(2013)

Lugauer
et al. (2014a)

2014 48(18) NA Mohr et al.
(2012), Wang
et al. (2012)
and Shahzad
et al. (2013)

NA NA 72–74 No Kirişli et al.
(2013)

Lugauer
et al. (2014b)

2014 48(18) NA Mohr et al.
(2012),
Lugauer et al.
(2014a),
Shahzad
et al. (2013)
and Wang
et al. (2012)

NA NA 75–77 No Kirişli et al.
(2013)

Chi et al.
(2015)

2015 10(6) NA NA NA NA 84 No No

Lesage et al.
(2016)

2016 61(10) Skare et al.
(2003) and
Douc et al.
(2009)

NA NA NA 86.2 No No

Han et al.
(2016)

2016 32(8) NA Schaap et al.
(2009b)

NA NA <84.3 No Schaap et al.
(2009a)

Freiman
et al. (2017)

2017 48(18) NA Mohr et al.
(2012)
Lugauer
et al. (2014a)

NA NA 69–74 No Kirişli et al.
(2013)

Gao et al.
(2019)

2017 50a NA NA NA NA 93-95b No No

Du et al.
(2021)

2021 100a NA NA Han et al.
(2014), Yu
et al. (2017)
and Shen
et al. (2019)

NA 82 No No

aOnly testing data is involved (training data is not applicable).
bThe segmentation result includes the initial part of the aorta.
2.2. DL-based approach

Since the rise of deep learning, it has attracted tremendous at-
tention in the related communities. Currently, as shown in Table 2,
there are mainly five technique trends including pixel-based segmenta-
tion (Moeskops et al., 2016; Kjerland, 2017), direct segmentation (Shen
et al., 2019; Lee et al., 2019; Yang et al., 2019; Fu et al., 2020; Lei et al.,
2020; Gu et al., 2020; Gu and Cai, 2021; Zhu et al., 2021; Liang et al.,
2021; Tian et al., 2021; Cheung et al., 2021; Li et al., 2018a,b; Lin et al.,
2022), patch based segmentation (Duan et al., 2018; Chen et al., 2018b;
Huang et al., 2018; Chen et al., 2019; Mirunalini et al., 2019; Wang
et al., 2021; Pan et al., 2021), tree data based segmentation (Kong et al.,
2020), and graph data based segmentation (Wolterink et al., 2019).
Some other works like (Wu et al., 2019) performs detailed anatomical
labeling of coronary arteries, which is out of the scope of this paper.

Pixel-based segmentation is the pioneer to adopt convolutional
neural networks (CNNs) into coronary artery segmentation. Moeskops
3

et al. (2016) used a single convolutional neural network to show the
feasibility of deep learning for coronary vessel segmentation. Kjerland
(2017) used two neural networks trained on aorta segmentation and
coronary segmentation respectively and is able to segment the complete
coronary artery tree.

Then, direct segmentation has been popular due to the rise of U-
net (Ronneberger et al., 2015). Shen et al. (2019) propose a joint frame-
work based on deep learning and traditional level set method. Lee et al.
(2019) adopted template transformer networks where a shape template
is deformed to match the underlying structure of interest through an
end-to-end trained spatial transformer network. Yang et al. (2019)
adopted a discriminative coronary artery tracking method which in-
cluded two parts: a tracker and a discriminator. Fu et al. (2020)
used Mask R-CNN for coronary artery segmentation in which the lung
region prior is masked out to avoid the interferences from pulmonary
vessels. Lei et al. (2020) integrated deep attention strategy into the fully
convolutional network (FCN) model (Long et al., 2015) to highlight the
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Table 2
Existing deep learning based works and their Dice scores (in %) of coronary artery segmentation in the past decade. In 𝑎(𝑏), 𝑎 is the overall quantity and 𝑏 is the quantity
for training. General indicates that the method is designed for a variety of applications, while specific indicates that the method is designed and optimized for coronary vessel
segmentation.

Work Year Data quantity Compared traditional ML methods Compared deep
learning methods

Average dice
score

Code
available

Data
available

General¶ Specific§ General Specific

Moeskops
et al. (2016)

2016 10(6) NA NA NA NA <65c No No

Kjerland
(2017)

2017 42(18) NA NA NA NA 78 No Kirişli et al.
(2013)

Duan et al.
(2018)

2018 50(40) Frangi et al.
(1998)

NA NA NA 80 No No

Chen et al.
(2018b)

2018 44(35) NA NA NA NA 86 No No

Huang et al.
(2018)

2018 52(45) NA Mohr et al.
(2012) and
Shahzad
et al. (2013)

NA Moeskops
et al. (2016)
and Kjerland
(2017)

83b No Kirişli et al.
(2013)

Shen et al.
(2019)

2019 70(50) NA NA Milletari
et al. (2016)

NA 90a No No

Chen et al.
(2019)

2019 15(11) NA NA NA NA 80 No No

Mirunalini
et al. (2019)

2019 50(40) NA NA NA NA 92 No No

Wolterink
et al. (2019)

2019 42(18) NA Lugauer
et al. (2014b)
and Freiman
et al. (2017)

NA NA 73–75 No Kirişli et al.
(2013)

Lee et al.
(2019)

2019 548(274) NA NA Ronneberger
et al. (2015)
and Long
et al. (2015)

NA 85 No No

Yang et al.
(2019)

2019 8(7) Cetin and
Unal (2015),
Aylward and
Bullitt (2002)
and Friman
et al. (2010)

NA NA NA <99b No Schaap et al.
(2009a)

Fu et al.
(2020)

2020 25(20) NA NA NA NA 90 No No

Lei et al.
(2020)

2020 48(18) NA NA NA NA 83 No Kirişli et al.
(2013)

Gu et al.
(2020)

2020 70(50) NA NA Çiçek et al.
(2016),
Milletari
et al. (2016),
Zhang et al.
(2019), Long
et al. (2015)
and Huang
et al. (2019)

NA 91 No No

Kong et al.
(2020)

2020 916(733) NA NA Yu et al.
(2017)

NA 85 No No

Wang et al.
(2021)

2021 48(18) NA NA NA Moeskops
et al. (2016),
Kjerland
(2017) and
Chen et al.
(2019)

91 No Kirişli et al.
(2013)

Gu and Cai
(2021)

2021 59(34) NA NA Patravali
et al. (2017),
Duan et al.
(2019),
Mortazi et al.
(2017), Chen
et al. (2018a)
and Milletari
et al. (2016)

NA 87 No No

(continued on next page)
4
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Table 2 (continued).
Zhu et al.
(2021)

2021 30(24) NA NA Ronneberger
et al. (2015),
Oktay et al.
(2018),
Badri-
narayanan
et al. (2017)
and
Diakogiannis
et al. (2020)

NA 88 Yes No

Liang et al.
(2021)

2021 300(200) NA NA Çiçek et al.
(2016)

NA 89 No No

Tian et al.
(2021)

2021 70(50) NA NA Çiçek et al.
(2016),
Milletari
et al. (2016),
Zhang et al.
(2019),
Huang et al.
(2019) and
Isensee et al.
(2021)

NA 94a No No

Pan et al.
(2021)

2021 474(432) NA NA Yu et al.
(2016)

NA 94 No No

Cheung et al.
(2021)

2021 69(44) NA NA Zhou et al.
(2018)

NA 89 No No

aThe segmentation result includes the initial part of the aorta.
bTwo kinds of datasets including a private dataset and a public dataset are adopted for evaluation, and the comparison is only performed on the public dataset.
cThe Dice score was estimated from figures.
informative semantic features extracted from CCTA images. Gu et al.
(2020) proposed a global feature embedded network for better coro-
nary arteries segmentation. Gu and Cai (2021) proposed a two-stage
strategy that retains the advantages of both 2D and 3D CNNs. Zhu et al.
(2021) proposed a U-shaped network based on spatio-temporal feature
fusion structure which combines features of multiple levels and differ-
ent receptive fields separately to get more precise boundaries. Liang
et al. (2021) proposed an improved U-net which integrated channel
attention and spatial attention to distinguish confusing categories and
targets with similar appearance features. Tian et al. (2021) combined
deep learning and digital image processing algorithms to address the
problem of the limited GPU memory. Cheung et al. (2021) proposed a
fully automatic two-dimensional U-net model to segment the aorta and
coronary arteries.

As direct segmentation usually requires a downsampled image as
the input thus cannot obtain the local details well, patch based seg-
mentation becomes popular. Essentially in this method, a rough seg-
mentation on the downsampled image is performed first and then
a refinement is adopted in a patch manner to extract the local de-
tails. Duan et al. (2018) proposed a context aware 3D FCN for vessel
enhancement and segmentation which outperformed conventional Hes-
sian vesselness based approach (Frangi et al., 1998). Chen et al. (2018b)
adopted a paired multi-scale 3D CNN to identify which voxels belong
to the vessel lumen. Huang et al. (2018) transformed CTA image into
small patches and then sent them to a 3D U-net (Çiçek et al., 2016)
for processing. Chen et al. (2019) incorporate vesselness maps into the
input of 3D U-Net (Çiçek et al., 2016) to highlight the tubular struc-
ture of coronary arteries. Mirunalini et al. (2019) combined CNN and
recurrent neural networks to identify the presence of coronary arteries
in 2D slices. Wang et al. (2021) incorporated the voxel and point cloud-
based segmentation methods into a coarse-to-fine framework. Pan et al.
(2021) proposed 3D Dense-U-Net which was further optimized with a
focal loss to tackle the imbalance problem.

Recently, some methods have been proposed to incorporate image
data into segmentation by converting them into special data structures,
such as tree structures and graph structures. Note that the morphologi-
5

cal structure of the coronary arteries is tree-like, and generally divides
into a left coronary artery and a right coronary tree with blood flowing
from the aorta to the coronary arteries and then to the individual
branches. Wolterink et al. (2019) used graph convolutional networks
(GCNs) to predict the spatial location of vertices in a tubular surface
mesh that segments coronary artery. Kong et al. (2020) proposed a
novel tree-structured convolutional gated recurrent unit (ConvGRU)
model to learn the anatomical structure of coronary artery.

2.3. Benchmark and datasets

In Table 1 and Table 2 we can easily notice the broad attention
of this topic around the world. We can also find that most works did
not make a fair and comprehensive comparison with earlier works. For
the traditional ML-based approach, many works focused on algorithmic
development based on a public dataset (Kirişli et al., 2013) which has
only 42 CTA images. The comparisons were also made based on this
dataset, and each work (Mohr et al., 2012; Wang et al., 2012) just
obtained the performance from other papers without reimplementation.
In the meantime, other works (Han et al., 2016) were using another
public dataset (Schaap et al., 2009a) for their evaluation. On the
other hand, however, even more works prepared in-house datasets for
evaluation which failed to compare to other works or only compared
with general methods (Lugauer et al., 2014b; Chi et al., 2015; Han
et al., 2016; Freiman et al., 2017; Gao et al., 2019; Du et al., 2021).
Note that we define general methods here as those usually target
at general algorithms for a variety of applications, while oppositely
specific methods as thoses designed and optimized for specific applica-
tions, e.g., coronary vessel segmentation. The use of proprietary dataset
and hence missing or partial comparison problem became even more
common when DL-Based approach began to prevail. For example, Kong
et al. (2020) did not compare their model with any previous related
works but just some popular DNNs such as 3D U-net (Huang et al.,
2019). Shen et al. (2019) listed the Dice score achieved by other
works on different dataset for the evaluation of theirs. In addition
to dataset inconsistency, problems in other benchmarking components
are also widespread. Some works (Chi et al., 2015; Han et al., 2016)

used different sets of evaluation metrics based on their specific clinical
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Fig. 1. Examples including CT images, their labels, CT slices and their labels in CT slices in the proposed ImageCAS dataset. Note that subclasses of coronary arteries are not
further individually labeled.
needs, while others (Shen et al., 2019) used a different annotation
strategy in which the initial aorta is included, leading to a much higher
Dice score.

With the above analysis, we can notice that a benchmark and a
dataset for further development of this topic are needed. On one hand,
most of the methods only used in-house datasets for evaluation, but
their image acquisition parameters, reconstruction techniques, and la-
bel methods vary significantly. On the other hand, most of the methods
just performed comparison with general methods but without existing
related works. The situations became even worse for deep learning
based methods. Note that the success of deep learning heavily relies on
a large dataset with high quality annotations, but the two commonly
used datasets (Schaap et al., 2009a; Kirişli et al., 2013) are quite
small (only contain just 8 and 18 images respectively for training). In
addition, almost all works have not provided their source code, which
also brings a lot of difficulties for their fair comparison. Although some
works (Moeskops et al., 2016; Kjerland, 2017; Yu et al., 2017) are
relatively easy to implement for comparison purpose, most others are
intensively complex with too many details in their specifications such as
network structure, preprocessing, hyper-parameters, and postprocess-
ing. The above problem has also been identified in some other works.
For example, the work (Tian et al., 2021) stated that ‘‘since most of
the coronary artery segmentation methods use private dataset, there is
no suitable public coronary data set for us to test’’. Both (Huang et al.,
2018) and Yang et al. (2019) performed comparison with related works
on the dataset (Schaap et al., 2009b), but conducted experiment on
a private dataset without comparison which is due the fact that it is
not easy to implement the existing methods. The work (Huang et al.,
2018) stated that ‘‘the training data seemed relatively small..’’.. Some
works (Yang et al., 2019) also tried to solve the small dataset problem.
The work (Moeskops et al., 2016) stated that ‘‘in future work, we will
further investigate the capacity of the current architecture with more
data and segmentation tasks’’.

In order to uniformly investigate the effectiveness of each method,
we collected a large dataset and made it public available. This dataset
contains 1000 3D CTA images, which is considerably larger than the ex-
isting public datasets. Furthermore, we proposed a benchmark in which
we tried our best to implement typical existing methods. Although the
code of the existing methods is not publicly available and some experi-
mental details are missing, we have conducted similar implementations
6

based on their core ideas. We further evaluated the performance of each
method on the proposed dataset with multiple sets of configurations.
In addition, we have also proposed a baseline segmentation framework
which achieved better performance than existing works. Details of the
proposed dataset and benckmark will be discussed in Sections 3 and 4.

3. ImageCAS dataset

The proposed dataset consists of 3D CTA images captured by
Siemens 128-slice dual-source scanner from 1000 patients. For those
patients who have previously been diagnosed with coronary artery
disease, early revascularization (within 90 days after) are included.
The high-dose CTA is performed and during the reconstruction, the
30%–40% phase or the 60%–70% phase is selected to obtain the best
coronary artery images. The images have sizes of 512×512×(206−275)
voxels, a planar resolution of 0.29–0.43 mm2, and spacing of 0.25–
0.45 mm. The data was collected from realistic clinical cases at the
Guangdong Provincial People’s Hospital during April 2012 to December
2018. Only the patients older than 18 years and with a documented
medical history of ischemic stroke, transient ischemic attack and/or
peripheral artery disease are eligible to be included. The index cardiac
CTA or low imaging quality of CCTA (assessed by level III radiologist)
were also excluded due to the possible influence on the function of the
coronary artery. Finally, there are totally 414 females and 586 males
included, the average ages being 59.98 and 57.68, respectively. The left
and right coronary arteries in each image are independently labeled by
two radiologists, and their results are cross-validated. In case of discrep-
ancy, a third radiologist will perform the annotation and the final result
is determined by consensus. The labeled coronary artery includes the
left main coronary artery, left anterior descending coronary artery, left
circumflex coronary artery, right coronary artery, diagonal 1, diagonal
2, diagonal 3, obtuse marginal branch 1, obtuse marginal branch 2,
obtuse marginal branch 3, ramus intermedius, posterior descending
arteries, acute marginal 1 and other blood vessels according to the AHA
naming convention (17 paragraphs). Two examples of the dataset are
shown in Fig. 1.

4. Benchmark

As the deep learning based methods in almost all recent works
have shown promising performance in cornary artery segmentation,
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Fig. 2. Overview of the methods in the proposed benchmark including (a) direct segmentation (Shen et al., 2019), (b) patch based segmentation (Huang et al., 2018; Chen et al.,
2019), (c) tree data based segmentation (Kong et al., 2020), and (d) graph data based segmentation (Wolterink et al., 2019).
we have implemented several typical deep learning based methods
including direct segmentation (Shen et al., 2019), patch based segmen-
tation (Huang et al., 2018; Chen et al., 2019), tree data based segmen-
tation (Kong et al., 2020), graph data based segmentation (Wolterink
et al., 2019). In addition, we also propose a baseline method which
achieves better performance than existing works on the proposed large-
scale dataset. We describe the details of each method in the following
sections and more about the their implementations can be found at
https://github.com/XiaoweiXu/ImageCAS-A-Large-Scale-Dataset-and-
Benchmark-for-Coronary-Artery-Segmentation-based-on-CT.

4.1. Direct segmentation

Direct segmentation only adopts a single neural network, which is
a simple but efficient for coronary artery segmentation. Particularly,
7

the image is fed to the network which outputs the probability map
without complex processing. As the images are usually large and thus
hard to be accommodated by GPUs, they need to be downsized to a
smaller resolution in practice. We select FCN-AG (Shen et al., 2019) as
a representative. The details of the method are shown in Fig. 2(A), and
the overall structure is an FCN backbone with attention gate modules.
The process can be divided into the following three steps:

(1) resize high resolution CTA images into low resolution ones using
interpolation;

(2) feed the low resolution image to the FCN-AG network, and then
obtain the prediction of coronary artery.

(3) resize low resolution prediction labels into the high resolution
ones using interpolation.

https://github.com/XiaoweiXu/ImageCAS-A-Large-Scale-Dataset-and-Benchmark-for-Coronary-Artery-Segmentation-based-on-CT
https://github.com/XiaoweiXu/ImageCAS-A-Large-Scale-Dataset-and-Benchmark-for-Coronary-Artery-Segmentation-based-on-CT
https://github.com/XiaoweiXu/ImageCAS-A-Large-Scale-Dataset-and-Benchmark-for-Coronary-Artery-Segmentation-based-on-CT
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For more details of the method, please refer to the original work (Shen
et al., 2019).

4.2. Patch based segmentation

To tackle the computational resource constraints and missing details
due to downsampling, patch based segmentation (Huang et al., 2018;
Chen et al., 2019) has been proposed. We consider the dual-CNN-based
framework (Huang et al., 2018; Chen et al., 2019) as an example to
evaluate this class of methods (Fig. 2(b)). First, a 3D U-net is used
to extract the region of interest (RoI) and remove irrelevant areas.
Then, the cutout image is resized from 512 × 512 × 𝑍 to 𝑊 × 𝐻 × 𝑍𝑐
𝑊 ≤ 512,𝐻 ≤ 512, 𝑍 ≤ 𝑍𝑐). According to the (Chen et al., 2019),
e use Frangi filtering to enhance tubular structures, and the obtained
ascular enhancement map is combined with the input image to form
multi-channel input. Next, the multi-channel input is decomposed

nto small patches which are fed into another CNN for processing.
inally, the segmentation of the patches are combined to obtain the
inal segmentation result.

.3. Tree data based segmentation

Tree data based segmentation method is promising as it considers
he morphological structure of the coronary arteries. We select the
ork presented in Kong et al. (2020) to implement a tree convolutional

ecurrent neural network and details are shown in Fig. 2(c). First, the
pproximate centerline is obtained by skeletonizing the pre-segmented
abels. To simplify the steps of constructing the tree, the point with
he largest coordinate in the 𝑍-axis is taken as the root node, and
he rest are regarded as the leaf nodes. Then, each centerline point is
aken as the center to get the patch which is then used to extract node
eatures. Next, the connections in the tree are constructed based on the
eighborhood relationship between centerline points. Finally, the tree
tructure data is used as the input to TreeConvGRU (Kong et al., 2020)
nd the predicted labels are obtained as output.

.4. Graph based segmentation

Graph based segmentation works in a similar way as tree data based
egmentation. Referring to the idea in Wolterink et al. (2019), we have
esigned a similar scheme as shown in Fig. 2(d). First, the centerline
s obtained by the same processing pipeline as that in tree data based
egmentation. Then, graph structured data is produced. Particularly, a
umber of rays perpendicular to the tangent of each centerline point are
ssued while the angle formed by the two tangents between adjacent
ays remains the same. A d-dimensional feature is formed from the
tarting point of the ray in the direction of the tangent line at some
tep size, depending on the block of voxels through which the ray
asses. Each ray intersects the edge of the vessel, and the Euclidean
istance between the point of intersection and the centerline point is
btained as its radius. After predicting the radii of all the centerline
oint, the coronary arteries are reconstructed and we can get the final
egmentation.

.5. Baseline method

The proposed baseline method is a combination of patch segmenta-
ion and coarse segmentation as shown in Fig. 3. Such combination is a
rade-off between performance and implementation feasibility. On one
and, the direct segmentation of the whole 3D image in the original
esolution is not feasible due to the large memory consumption, while
he segmentation of the resized image (defined as coarse segmentation)
s feasible but leading to a limited performance. On the other hand,
atch based segmentation can provide more details but sometimes also
8

as obvious errors due to the loss of global contextual information.
Our baseline method has two main modules: patch segmentation
nd coarse segmentation. Before being processed by the two modules,
ach input image is resized from 512×512×(206−275) to 128 × 128 × 64
sing linear interpolation. In coarse segmentation, a 3D U-net (Çiçek
t al., 2016) is used to obtain a rough segmentation of coronary
rtery which can usually capture the global structure, e.g., all the
elated vessels are included with inaccurate boundaries. For the ease
f discussion, we denote 𝜃(𝑋) as the segmentation network, where 𝑋
s the input image, and 𝑌𝑐 is the output. Then, the network is trained
ith the following similarity coefficient loss:

𝑐 (𝜃(𝑋), 𝑌 ) = 1 −
2 ∣ 𝑌𝑐 ∩ 𝑌 ∣ +𝑠
∣ 𝑌𝑐 ∣ + ∣ 𝑌 ∣ +𝑠

, (1)

where 𝑌 is the ground truth and 𝑠 is the smoothing factor.
In patch segmentation, the main problem is how to precisely obtain

the relevant patches which contains coronary arteries. If we simply
use sliding window to generate patches, all the patches including the
ones that contain other small vessels or vessel-like anatomies will be
processed. In this way, the segmentation network needs to consider
both the target regions and the non-target regions, which introduces
much difficulty into the segmentation task. To solve this problem, we
adopt another network to roughly obtain the overall target region. Note
that the result in the coarse segmentation step can be adopted for such
purpose. However, in the prior experiments we find that this can lead to
a number of problems, such as interrupted vessels. Thus, we introduce
another sub-step, dilated vessel segmentation to extract a rough mask of
the coronary artery using 3D U-net. Then, the output is dilated, and the
vessels become much thicker and less likely to be interrupted. To make
the vessels even thicker, the following weighted similarity coefficient
loss function (Sudre et al., 2017) is used:

𝐿𝑚(𝜙(𝑋), 𝑌 ) = 1 −
∣ 𝑌𝑑 ∩ 𝑌 ∣ +𝑠

𝛼 ∣ 𝑌𝑑 ∣ +(1 − 𝛼) ∣ 𝑌 ∣ +𝑠
, (2)

where 𝜙(𝑋) is the segmentation network, 𝑌𝑑 is the output, 𝑠 is the
moothing factor, and 𝛼 is the class weight (𝛼 ∈ (0, 1)). In order to make

the segmentation results to cover most of target regions, 𝛼 is set to 0.01.
Thus, the network is biased to obtain oversized vessels in the output. In
the network training, 𝑌𝑑 is obtained by dilating the coronary artery in
the ground truth 𝑌 . To obtain the precise position, 𝑌𝑑 is further resized
to the original size of the input image using interpolation. Note that
during the test stage, the results from the dilated vessel segmentation
network are further dilated to insure better connectivity. The skeleton
of the vessels is extracted using a surface thinning algorithm (Lee et al.,
1994).

With the resized skeleton and the input image, we perform patch
segmentation as follows: (1) Extracting the two largest connected com-
ponents through connected component analysis and discarded others.
This is due to the domain knowledge that there are usually two vessels
(the left and right coronary arteries); (2) Extracting 𝑛𝑐 sets of cubic
patches with a skeleton point as the center and an edge length of 𝑟
(𝑛𝑐 = 3, and 𝑟 = 16, 32, 64 in Fig. 3); (3) 3D U-net++ (Zhou et al.,
2018) is adopted to process 𝑛𝑐 sets of patches, as it handles details more
accurately than 3D U-net; (4) The segmented patches are then fused
to obtain a segmentation image of the same size as the original input
image; (5) Finally, the 𝑛𝑐 segmentation images are fed to the ensemble
step to get the final output. Note that majority voting is adopted here
for the ensemble.

5. Experiments and discussion

In this section, we first discuss the overall setup for all experiments.
Then, each method with specific configurations and their performances
are discussed. Finally, all the methods with the optimal configurations
are compared and analyzed.
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Fig. 3. Framework of the proposed baseline method.
5.1. Experiment setup

All experiments were implemented using PyTorch (Paszke et al.,
2019) and DGL (Wang et al., 2019), and performed on a Nvidia RTX
3090 GPU with a 24G memory. In the direct segmentation, patch
segmentation and tree-structure segmentation, we used the Dice loss
during training. In the graph based segmentation, distance values are
cubed in the loss function as in Wolterink et al. (2019), and we adopted
the loss functions as shown in Eq. (1) and Eq. (2) for training. In
patch based segmentation, the patches with 16,32,64 are discussed, and
the Dice loss is used for training. In the baseline method, a spherical
structure with a radius of 𝑟 = 5 is used to dilate the vessels. All
the networks in our implementation are trained for 30 epochs (about
21,000 iterations), and the Adam optimizer is adopted with a learning
rate of 0.002. Due to the limited GPU memory, the batch size various
for different input sizes. The batch size is 8, 2, and 1 for an input size of
128 × 128 × 128, 256 × 256 × 128, and 512 × 512 × 256, respectively
in the pre-segmentation or coarse segmentation steps. While that in
the patch segmentation step is 512, 64, 8 for an input size of 163,
323, and 643, respectively. Experiments were evaluated using a 4-fold
cross-validation approach, with a training set of 750 cases (50 cases are
used for validation) and a test set of 250 cases. The Dice score is used
for evaluation, which is widely used in the community as indicated in
Table 1 and Table 2.

5.2. Configuration discussion

5.2.1. Direct segmentation
We discussed some factors that may affect the segmentation per-

formance including the input size, the use of attention mechanism
and the number of channels. Input size including 128 × 128 × 128,
256 × 256 × 128, and 512 × 512 × 256 are discussed which are
obtained by nearest neighbor interpolation of the original image. The
number of channels including 4 and 12 are discussed.

The results are shown in Fig. 4. We can notice that the input size of
512 × 512 × 256 significantly improves the Dice score by 7.38% (𝑝 <
0.0001) and 12.32% (𝑝 < 0.0001) compared to that of 256 × 256 × 128
and 128 × 128 × 128, respectively. The addition of the attention gate
module significantly improves the performance by 1.34% (𝑝 < 0.0001),
which is also observed by the work (Shen et al., 2019). The number
of channel of 12 (parameter number of 5.24M) obtains a significantly
better Dice score than that of 4 (parameter number of 0.59M) by 2.13%
(𝑝 < 0.0001) in Dice score.
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Visual discussion is shown in Fig. 5. Due to the low contrast around
the coronary region in the CTA images, direct segmentation always
focus on the whole coronary artery while ignoring the local details.
We can notice that there is little difference in voxel intensity between
the vascular portion and the rest of the adjacent tissue, and the direct
segmentation method cannot correctly identify this portion of coronary
artery resulting in segmentation errors. In addition, directly segmenta-
tion with a high resolution input needs more computational resources
and limits the network size and the model capability.

5.2.2. Patch based segmentation
In the implementation, the cropping method in Chen et al. (2019)

was adopted, where real labels are used in the training set for skele-
tonization. The corresponding patches are cropped at the center of
the skeleton points, and the cropped regions are randomly selected
so that the ratio of regions with labels to those without is 1:1. We
explored three factors including patch size, frangi channel and data
augmentation that may affect the performance. For data augmenta-
tion, the probability of rotation (randomly 0, 90, 180, 270 degrees)
and horizontal flipping are discussed. For ease of discussion, the two
probabilities are set to the same value, and three values including 0,
0.2, and 0.5 are discussed.

Quantitative performance is shown in Fig. 6. There is no significant
difference between the network with the Frangi channel and that
without, with a difference of only 0.01% (p>0.05) in the Dice score. For
patch size, we can notice that a larger patch size obtains a significantly
higher Dice score than a smaller one, which is expected as a larger
patch size has a larger receptive field and thus can capture better
context information. For data augmentation, we find that flipping and
rotation probabilities of 0/0 (no flipping and rotation) obtains an
improvement of 2.63% (𝑝 < 0.0001) and 2.73% (𝑝 < 0.0001) in Dice
scores than that of 0.2/0.2 and 0.5/0.5. This interesting phenomenon
may due to the fact that coronary arteries have its own directions with
corresponding surround anatomies, and rotation and flipping operation
may produce unrealistic augmented samples which may harm the
training process.

Visual discussion of failed cropped regions of interest (RoI) in patch
based segmentation is shown in Fig. 7. We can see that several similar
vessels are recognized as coronary arteries which may caused by the
fact that their appearance are quite similar to the coronary arteries. To
tackle this problem, we can adopt a connectivity domain analysis in the
post-processing step, and we find that for most of the predicted images,
this refinement is effective in removing similar regions. However, this
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Fig. 4. Performance discussion of direct segmentation with various configurations including (a) input size, (b) attention gate module, and (c) the number of channels. ns stands
for not significant (𝑝>0.05), and ** stands for 𝑝 smaller than 0.01, *** stands for 𝑝 smaller than 0.001, and **** stands for 𝑝 smaller than 0.0001.

Fig. 5. Visual discussion of direct segmentation results with failure cases.

Fig. 6. Performance discussion of patch based segmentation with various configurations including (a) Frangi channel, (b) patch size, and (c) data augmentation. ns stands for not
significant (𝑝>0.05), and ** stands for 𝑝 smaller than 0.01, *** stands for 𝑝 smaller than 0.001, and **** stands for 𝑝 smaller than 0.0001.
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Fig. 7. Visual discussion of failed cropped RoI in patch based segmentation including cross-sectional view on the input images, predicted labels, ground truths and pre-segmented
formed bounding boxes.
Fig. 8. Visual discussion of (a) successful and (b) failed cases of largest connected component (LCC) post-processing in patch based segmentation.
Fig. 9. Performance discussion of tree data based segmentation and graph based segmentation with various configurations including (a) tree models, (b) patch size in tree node
construction, input size in (c) tree data based segmentation and (d) graph based segmentation. ns stands for not significant (𝑝>0.05), and ** stands for 𝑝 smaller than 0.01, ***
stands for 𝑝 smaller than 0.001, and **** stands for 𝑝 smaller than 0.0001.
does not work well for some images, generating large number of small
vessels and resulting in the partial removal of the coronary arteries as
shown in Fig. 8. In Fig. 8(a), the border is well removed from the tissue
around the heart, while in Fig. 8(b) the pre-segmentation holds other
structures such as bone tissue in the output.

5.2.3. Tree data based segmentation and graph based segmentation
As tree data based segmentation and graph based segmentation are

similar and share the same pre-segmentation module, we put the two
11
together for ease of discussion. In both the two methods, the input
size including 128 × 128 × 128 and 512 × 512 × 256 are discussed.
In the tree structure segmentation, we adopted two models including
TreeConv3FGRU and TreeConv3DLSTM and the patch size including
16 × 16 × 4 and 16 × 16 × 8 during tree node construction for
discussion.

Segmentation performance is shown in Fig. 9. We can discover
that the two tree models TreeConvGRU and TreeConvLSTM has only
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Fig. 10. Visual discussion of failed cases in tree and graph based segmentation.
Fig. 11. Visual discussion of (a) good and (b) poor segmentation cases in the baseline method.
Table 3
Dice score (in %) of the baseline method. Intermediate results including those from the
coarse segmentation step and the branches of the patch segmentation are also included.

Module Dilation Patch size Dice score

Patch segmentation w/o 163 79.56
Patch segmentation w/o 323 81.22
Patch segmentation w/o 643 82.34
Ensemble (Patch) w/o 163,323,643 80.97
Ensemble (Coarse+Patch) w/o 163,323,643 82.21
Patch segmentation w/ 163 77.80
Patch segmentation w/ 323 82.27
Patch segmentation w/ 643 82.70
Ensemble (Patch) w/ 163,323,643 81.11
Ensemble (Coarse+patch) w/ 163,323,643 82.96

a difference of 0.06% (p>0.05) in Dice score thus with no signifi-
cant difference. In tree data based segmentation, the patch size of
16 × 16 × 4 obtains a higher Dice score of 1.38% (𝑝 < 0.005) than
that of 16 × 16 × 8, which indicates larger patch size may not always
benefit the final performance. Compared Fig. 9(c) and (d), we can
find an interesting phenomenon that hat the input size has a very
different effect on the performance. For tree data based segmentation,
the difference between the performance of the implementation with the
high-resolution and that with the low-resolution input is only 0.12%
(p>0.05). While for graph based segmentation, the implementation
with the high-resolution input outperforms that with the low-resolution
inputs by 2.95% (𝑝 < 0.0001) in Dice score.

We also discuss the failed cases in pre-segmentation which is a
critical step for both tree data based segmentation and graph based
segmentation as shown in Fig. 10. Note that the two methods are both
12
centerline-based solutions, relying on the centerline to construct data
and segment the vessels. In practical terms, we lack the labels of the
true centerline to support the training of a centerline model. Here, we
adopt the segmentation of the network which are then labeled and
skeletonized to make an approximate centerline to implement both
methods. Therefore, the quality of the pre-segmentation becomes a key
factor in the accuracy of the subsequent segmentation. As shown in
Fig. 10, some coronary arteries are missing in pre-segmentation, and as
a result the missing vessels will not be constructed as a tree structure
or graph structure. Finally, these coronary arteries are missing in the
rest of the processing, resulting in errors in the final segmentation.

5.2.4. Baseline method
We discussed several factors including modules (patch segmentation

and coarse segmentation), ensemble, dilation (w/ and w/o), and patch
size (163, 323, and 643). The performance is shown in Table 3. For
the patch segmentation module, Dice scores of 79.56%, 81.22% and
82.34% are obtained without dilation for patch sizes of 163, 323 and
643, respectively, and their paired comparisons (163 vs 323 (𝑝 <
0.0001), 163 vs 643 (𝑝 < 0.0001), and 323 vs 643 (𝑝 < 0.001)) show
statistical significance. We can notice that larger patch sizes indicate
larger receptive field, which benefits the segmentation. While with
dilation, larger patch sizes still obtains higher Dice score. However,
there is no statistical significance (p>0.05) between a patch size of 323

and that of 643. The main reason is that dilation is also effective to
extract the context information. The combination of the patch size of
323 and dilation is powerful enough to extract the context information,
and larger receptive field with a larger patch size and dilation cannot
further extract more context information. We can also note that dilation
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Fig. 12. Visual comparison of the results of the five methods in the benchmark with four cases.
can improve the performance with the patch size of 643 and 323 but not
for 163, which may due to the fact that dilation will dismiss some pixels
which is with a small quantity in the input with a small patch size. In
terms of ensemble, the ensemble using the coarse segmentation module
with the patch segmentation module (82.96%) outperforms that of each
base classifier (77.80%, 82.27%, 82.70%) in terms of Dice score.

Visual illustration of good and poor segmentation cases is shown in
Fig. 11. As shown in Fig. 11(a), the segmentation result is good which
can well match the ground truth in both the 2D CT slices and the 3D
view. We can also notice that the output of dilation covers all the areas
of the ground truth. Fig. 11(b) shows an example of poor segmentation.
We can notice that a thick vessel and a long thin vessel are missing
which is due to the fact that they are not recognized by the dilated
vessel segmentation module. Particularly, the thick vessel as shown in
13
the 2D CT slice is close to the right atrium and has a similar gray scale
value to the right atrium. As a result, the vessel is relatively hard to be
recognized correctly.

5.3. Benchmark comparison

Performance comparison of all the methods in the benchmark is
shown in Table 4. We can notice that the proposed baseline method
achieves the optimal performance on all metrics. We can also discover
an interesting phenomenon that patch segmentation, tree data based
segmentation and graph based segmentation has a much lower per-
formance than direct segmentation. We can make a rough discussion
here. Such phenomenon partially shows the same trend in existing
works in which direct segmentation (89 in Cheung et al. (2021)) has
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Table 4
Performance comparison of the methods in the benchmark in Dice score (%). Each method is with the optimal result which is selected from implementations with various
configurations.

Method Input type Input size Dice score (%) HD (mm) AHD (mm)

Direct segmentation (3D FCN) (Shen et al., 2019) Full image 512 × 512 × 256 80.58 28.6656 0.8503
Patch segmentation (3D U-net) (Huang et al., 2018; Chen et al., 2019) Patch 64 × 64 × 64 72.01 40.9693 3.0686
Tree data based segmentation (3D TreeConvGRU) (Kong et al., 2020) Tree 𝑁 × 16 × 16 × 4 68.78 30.3350 1.4336
Graph based segmentation (GCN) (Wolterink et al., 2019) Graph 𝑁 × 32 70.61 27.8718 1.2433
Baseline method (3D U-net and U-net++) Patch 128 × 128 × 64, 163,323,643 82.96 27.2169 0.8180
higher Dice score than patch segmentation (94 in Pan et al. (2021)),
tree data based segmentation (85 in Kong et al. (2020)), and Graph
based segmentation (73–75 in Wolterink et al. (2019)). But we can
still notice some inconsistencies that patch segmentation has a higher
performance than direct segmentation in existing works. There are
mainly two reasons. First, the dataset for evaluation is not the same,
and the quality of the datasets also varies. Note that our dataset is the
largest one currently, which is orders of magnitude larger than most of
the datasets used by existing methods. Second, there are much details
including hyper parameters, pre-processing and post-processing in the
existing works which is relatively hard for implementation. Though we
have tried our best to implement existing works, there is some details
(sometimes maybe critical details) that are inevitably missed due to
the lack of understanding and the limited length of the related papers.
Thus, we welcome related researchers in the community to join us to
improve the implementations.

Visual comparison of the methods in the proposed benchmark is
shown in Fig. 12. For direct segmentation, the performance of Case
A and Case C is good. However, when the quality of the images is
low and the structure of the coronary arteries varies considerably as
shown in Case B and D, areas with low contrast cannot be correctly
detected. For patch segmentation, the results are quite similar to that of
direct segmentation. The only difference is that patch segmentation can
recognize some thin vessels in Case D but cannot in Case A, while direct
segmentation has a opposite performance on the vessels in the two
cases. Also patch segmentation has a slightly better performance than
that of direct segmentation in Case B. It seems that patch segmentation
can process local features better than direct segmentation patch which
is expected as patch segmentation pay more attention on local feature
processing. Tree data based segmentation and graph based segmenta-
tion share a rather similar, however, they cannot discover the vessels
with low contrast well in Case B and Case D. The main reason is that
tree data based and graph based segmentation methods rely heavily on
the centerline extracted using the pre-segmentation, which determines
the number of nodes in the tree and graph structure. For the proposed
baseline method, the results show much better performance especially
on Case B where the majority of the vessels are correctly recognized.
The main reason is that the baseline method combines both the features
from coarse segmentation and patch segmentation with various patch
sizes, which can better extract the context information.

5.4. Discussion

We have implemented several typical deep learning based methods
including direct segmentation (Shen et al., 2019), patch based segmen-
tation (Huang et al., 2018; Chen et al., 2019), tree data based segmen-
tation (Kong et al., 2020), graph data based segmentation (Wolterink
et al., 2019), and our baseline method. The proposed baseline method
achieves the optimal performance on Dice score, HD and AHD. On the
other hand, we can also notice that the tree data based segmentation
method achieves a better performance than direct segmentation, which
is contrary to the results in Kong et al. (2020). This may be partially
due to the fact that there are many technique details in the training
and optimization in Kong et al. (2020). This is also the reason that we
published our dataset and code for fair comparison.
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Though our dataset is quite large compared with exiting works and
well labeled by two to three experienced radiologists, it has limitations.
First, our dataset was collected in only one center thus with biased
distributions. Second, only one kind of CT machines namely Siemens
128-slice dual-source scanner was used to acquire the CT images, which
make the biased problem even worse. Third, no detailed labels is
provided. For example, subclassess of coronary artery including left
main coronary artery, left anterior descending coronary artery, etc. are
not separated. We hope that others can also publish their datasets to
mitigate the above limitations and at the same time facilitate related
research.

Future directions of our benchmark can be various, and we only
name a few here. First, more advanced segmentation networks like
nnU-net (Isensee et al., 2021), CoTr (Xie et al., 2021), and UN-
ETR (Hatamizadeh et al., 2022) can be employed in existing frame-
works to enhance performance. Second, more advanced networks and
evaluation metrics can be explored to preserve the topology or connec-
tivity (Shit et al., 2021; Hu et al., 2019, 2021; Saeki et al., 2021) of
the coronary vessels which plays a critical role for further analysis and
diagnosis. Third, based on our dataset and existing ones (Schaap et al.,
2009a; Kirişli et al., 2013), multi-center related topics including federal
learning (Rajasree et al., 2022) and domain adaptation (Guan and Liu,
2021) can be further investigated.

6. Conclusion

Segmentation of coronary arteries is a critical task for the diagnosis
and quantification of coronary artery disease. In this paper, we propose
a benchmark dataset for coronary artery segmentation on CTA images.
In addition, we have implemented a benchmark in which we have not
only tried our best to implement several typical existing methods but
also proposed a strong baseline method. We have performed a compre-
hensive evaluation of the methods in the benchmark, and the results
show that the proposed baseline method achieves the optimal perfor-
mance with a Dice score of 82.96%. However, the performance still has
room of improvement for accurate diagnosis and stenosis quantification
for clinical practice. The benchmark and the dataset is published at
https://github.com/XiaoweiXu/ImageCAS-A-Large-Scale-Dataset-and-
Benchmark-for-Coronary-Artery-Segmentation-based-on-CT. We hope
that the proposed dataset and benchmark can stimulate further research
in the community.
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